0=-16t^2+12t+120

Simple and best practice solution for 0=-16t^2+12t+120 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+12t+120 equation:



0=-16t^2+12t+120
We move all terms to the left:
0-(-16t^2+12t+120)=0
We add all the numbers together, and all the variables
-(-16t^2+12t+120)=0
We get rid of parentheses
16t^2-12t-120=0
a = 16; b = -12; c = -120;
Δ = b2-4ac
Δ = -122-4·16·(-120)
Δ = 7824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7824}=\sqrt{16*489}=\sqrt{16}*\sqrt{489}=4\sqrt{489}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{489}}{2*16}=\frac{12-4\sqrt{489}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{489}}{2*16}=\frac{12+4\sqrt{489}}{32} $

See similar equations:

| 36+6n=12n | | 13=y/5-17 | | 3x-2+5x+7=21 | | 8x-7=2(2x-7)-5 | | s/6=2.5 | | 4x-50+(x+22)=180 | | 4x-50+x+22=180 | | b+16=6 | | b-16=6 | | 4/37x+8/37=20/37 | | 1/3x+3/4x=91 | | 3^4x-5=27^x+2 | | c+9.25=23.25 | | K+8/3=x2 | | 3/34x+9/34=9/34 | | c-9.25=23.25 | | c/9.25=23.25 | | -2h+2=-h-13 | | 9.25c=23.25 | | 10+k+10=-9k-10 | | 3x+72=8x-12 | | c/5=5.2 | | c-5=5.2 | | 7/x=6.74 | | 5c=5.2 | | c+5=5.2 | | 25x-15x=20 | | u/4+3=-25 | | N=2n+9 | | 4+j-2=5 | | 23+2+y=36 | | -4p+12=4 |

Equations solver categories